このページは現在英語版のみで提供されており、日本語版も近日中に提供される予定です。ご利用いただきありがとうございます。

コンテキスト管理の実装方法

Context management is very important for large models. It allows the model to provide more accurate responses based on chat history. Tencent Real-Time Communication (TRTC) AI offers basic context management capabilities and also supports developers in creating their own rich context management solutions.

Basic Context Management:

TRTC AI provides basic context management features. In the LLMConfig parameters, we introduce a History parameter to control context management:
History:
It is used to set the LLM's context rounds, with a default value of 0 (no context management is provided).
Maximum value: 50 (context management is provided for the most recent 50 rounds).
A relevant configuration example is shown below:
"LLMConfig": {
"LLMType": "openai",
"Model":"gpt-4o",
"APIKey":"api-key",
"APIUrl":"https://api.openai.com/chat/completions",
"Streaming": true,
"SystemPrompt": "You are a personal assistant",
"Timeout": 3.0,
"History": 5 // Up to 50 rounds of conversations are supported, with a default value of 0.
}

Custom Context Management:

The TRTC AI conversation service supports standard OpenAI specifications, allowing developers to implement customized context management in their own business. The implementation process is as follows:



This flowchart shows the basic steps for custom context management. Developers can adjust and optimize this process according to their specific needs.

Implementation Example

Developers can implement an OpenAI API-compatible large model interface at their own business backend and send large model requests encapsulated with context logic to third-party large models. Here is a simplified sample code:
import time
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI


app = FastAPI(debug=True)

# Add CORS middleware.
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)


class Message(BaseModel):
role: str
content: str


class ChatRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 0.7


class ChatResponse(BaseModel):
id: str
object: str
created: int
model: str
choices: List[dict]
usage: dict


@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest):
try:
# Convert the request message to the LangChain message format.
langchain_messages = []
for msg in request.messages:
if msg.role == "system":
langchain_messages.append(SystemMessage(content=msg.content))
elif msg.role == "user":
langchain_messages.append(HumanMessage(content=msg.content))


# Add more histories.

# Use LangChain's ChatOpenAI model.
chat = ChatOpenAI(temperature=request.temperature,
model_name=request.model)
response = chat(langchain_messages)
print(response)

# Construct a response that conforms to the OpenAI API format.
return ChatResponse(
id="chatcmpl-" + "".join([str(ord(c))
for c in response.content[:8]]),
object="chat.completion",
created=int(time.time()),
model=request.model,
choices=[{
"index": 0,
"message": {
"role": "assistant",
"content": response.content
},
"finish_reason": "stop"
}],
usage={
"prompt_tokens": -1, # LangChain does not provide this information, so we use a placeholder value.
"completion_tokens": -1,
"total_tokens": -1
}
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)